CORNEAEYECARESCIENCE
The future of corneal surgery
The future of corneal surgery is likely to be influenced by advances in technology and a growing understanding of corneal anatomy and physiology. Some of the key trends and developments in the future of corneal surgery include:
- Minimally invasive techniques: Advances in surgical instruments and techniques are likely to lead to more minimally invasive corneal surgeries, reducing the risk of complications and improving patient outcomes. An example of this is the femtosecond laser deep anterior lamellar keratoplasty (FSDALK). Femtosecond (FS) laser is an infrared laser with a wavelength of 1053nm. Since the pulse duration is in the 10-15 range, there is minimal damage to the surrounding tissue whilst penetrating the cornea. The DALK technique was previously discussed under “Corneal Transplants in Ophthalmology”. Essentially, with FSDALK, instead of using a circular blade or trephine to mechanically cut a circular incision in both donor and patient, “tongue and groove” patterns can be created to ensure a good fit of the graft without any slippage. This ensures good wound apposition and theoretically should reduce astigmatism. Additionally, the laser creates a wound healing reaction which also creates good adhesion, allowing earlier stitch removal. Visual recovery is faster than a traditional method of trephination.
- Improved imaging and diagnostic tools: Advances in imaging and diagnostic technologies, such as in-vivo confocal microscopy, will allow ophthalmologists to better visualise the cornea and diagnose corneal diseases more accurately. At present, there is no in-vivo Confocal Microscope in the Western Cape; in fact, there is only one of these microscopes in the whole of South Africa, which is privately owned in Gauteng. One of the core aims of Eyes2Eyes is to procure an in-vivo confocal microscope to improve the screening and diagnostic capacity Western Cape ophthalmology services.
- Customised treatments: With the growth of personalised medicine, corneal surgeons are likely to increasingly tailor treatments to individual patients based on their unique anatomy and medical history. Additionally, novel treatments, such as gene therapy (discussed previously on this blog) and regenerative medicine, are increasingly being researched for corneal diseases. These therapies are especially relevant in areas of the world where there is limited capacity for donor corneas. For example, Dr Heydenrych from Eyes2Eyes demonstrated the feasibility of a new growth medium that allows for the growth and proliferation of corneal cells, limbal epithelial cells, taken from previously traumatised corneas, to form cornea epithelium that could theoretically be transplanted.
- Increased use of robotics: Robotic systems and advanced surgical instruments are likely to be increasingly used in corneal surgery, improving the accuracy and precision of procedures. The da Vinci system (Intuitive Surgical, USA) is the current standard robotic surgical system used in the field of ophthalmology. It is a telemanipulation robot that has been utilised for performing pterygium surgery in human eyes and has been successful in ex vivo corneal surgery. Telemanipulation systems are a class of robotics that enable the operator to work remotely by a computerised human—machine interface.
- Advancements in artificial intelligence: Artificial intelligence is likely to play a growing role in corneal surgery, helping to plan surgeries, predict outcomes, and improve patient outcomes. AI has been used to predict the outcome of keratoconus management. More recently, AI-based algorithms using corneal topographies, tomographies, and Aanterior segment optical coherence tomograph (AS-OCT) such as KeratoDetect and Ectasia Status Index (ESI) have been developed to detect early keratoconus and screen patients before refractive surgeries. For the anterior segment of the eye in general, since the diseases often involve some form of imaging, including slit-lamp photography, AS-OCT, specular microscopy, corneal tomography/topography, and in vivo confocal microscopy (IVCM), there is a huge potential to leverage the power of AI to enhance the clinical service provision in these fields.
References
- (2016) Eviscerated Corneas as Tissue Source for Ex Vivo Expansion of Limbal Epithelial Cells on Platelet-Rich Plasma Gels, Current Eye Research, 41:12, 1543-1547.
- Pandey SK, Sharma V. Robotics and ophthalmology: Are we there yet?. Indian J Ophthalmol. 2019;67(7):988-994.
- Rampat R, Deshmukh R, Chen X, et al. Artificial Intelligence in Cornea, Refractive Surgery, and Cataract: Basic Principles, Clinical Applications, and Future Directions. Asia Pac J Ophthalmol (Phila). 2021;10(3):268-281.
- Alio JL, Abdelghany AA, Barraquer R, et al. Femtosecond Laser Assisted Deep Anterior Lamellar Keratoplasty Outcomes and Healing Patterns Compared to Manual Technique. Biomed Res Int. 2015;2015:397891.
- Sioufi K, Zheleznyak L, MacRae S, et al. Femtosecond Lasers in Cornea & Refractive Surgery. Experimental Eye Research 2021;205:108477.